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FOREWORD

The research reported in this paper was performed by the MITRE
Corporation in conjunction with the Digital Communications Experimental
Facility (DICEF) of the Rome Air Development Center (RADC), Griffiss
AFB. Channel tests of the AUTOVON network were conducted by RADC
and the digital data was analyzed by MITRE. Special appreciation must be
given to Mr. J. McEvoy of RADC/DCLD who helped organize the tests and
placed many of the test requirements in proper perspective, and to Capt.

C. Lownes RADC/DCLD who was test director.

The Codex 9600 modem was used solely because it was readily avail-
able at RADC. This study was in no way intended as an evaluation of the
Codex 9600 modem. The AUTOVON switches used for creating tandem
links were selected only because dial-thru units were available at these
switches at the time the tests started. The tests were conducted on a one-

to two-day per week basis from August 1973 to April 1974.

An interim analysis of the error pattern data available part way
through the test program was reported in ESD-TR-75-79, Characteriza-
tion and Modeling of the Digital High-Speed AUTOVON Channel-Interim
Report, August 1975. The results in this paper supersede and replace

the earlier results.
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SECTION 1

INTRODUCTION

In recent years there has been, within the civilian and military
worlds, a drive toward the use of voice grade circuits (nominally 2400 Hz
of usable bandwidth) for high-speed digital data transmission. This drive
has developed because of the need to interconnect computers and computer-
like devices on existing communication circuits at data rates sufficiently
high for thce achievement of operational computer efficiency. A natural
outgrowth of efforts in this direction is the use of the AUTOVON common-
uscr voice grade circuits for digital data transmission at the state-of-the-

art speced of 9600 b/s.

The Electronic Systems Division of the Air Force is presently devel-
oping with MITRE's technical support a new CONUS record data communica-
tion system for SAC called the SAC Automated Total Information Network
(SATIN IV). Since AUTOVON is thc primary candidate for use as the back-
bone transmission facility for SATIN IV, a study was undertaken to deter-
mine the digital characteristics of AUTOVON in light of the SATIN IV syvstem
performance requirements. As a first step in this study, digital error
patterns obtained during channel tests on AUTOVON are being analyzcd,

In this paper, a description of the AUTOVON channel tests results is pro-
(1]

vided using an analysis technique previously developed for such error

pattern tests.
AUTOVON

AUTOVON is a network of telephone circuits traversing wireline and

microwave links crisscrossing the country in the same fashion as the




commercial telephone system. AUTOVON is, however, limited in its use

to authorized agencies of the U.S. Government. It uses switches (i.e.,

ESS and CROSSBAR) of the same type employed in commerciai communica-
tions networks. These switches perform the call routing and interconnection
functions of AUTOVON. The network is made up of unconditioned Common
Grade Leased Lines.[2] These Common Grade Leased Lines are similar in
their analog characteristics to leased lines that meet C2 specifications.

The access lines into the network are conditioned C3 (referred to as S3

by the government). A brief summary of the nominal conditioning levels

is given in Table I.

Table I

Bell System Circuit Parameters

c2 C3
Frequency Range Amplitude Variation (dB)
0.3 -3.0 kHz -2 to +6 -0.8 to +2
0.5~ 2.8 kHz -1 to +3 -0.5to +1

Envelope Delay Distortion (usec)

0.5 - 2.8 kHz 3000 650
0.6 - 2.6 kHz 1500 300
1.0 - 2,6 kHz 500 110

The nominal conditioning levels, although useful in evaluating the
performance of analog systems, are not generally relevant to digital data
transmission performance. Such performance is more dependent on
channel noise and phase jitter and how the decision algorithm of the modem
responds to these channel conditions. Thus, the true digital data channel
is not AUTOVON alone, but rather AUTOVON in conjunction with the modem

used. The modem chosen for the tests reported herein was the Codex 9600
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modem. This modem was ehosen beeause it was the only on-hand govern-
ment-owned 9600 b/s telephone line data modem available at the RADC test
site during the test period.

The Codex 9600 Modem

The Codex 9600 modem is designed to transmit 4800, 7200 or 9600
bps serial, synchronous digital data at a 2400 baud signaling rate over a
dedieated type 3002, C2 eonditioned 4-wire telephone eircuit. It is a full-
duplex, double-sideband, suppressed-carrier modem using a combination
of amplitude- and phase-shift keying and transversal equalization. The
transmitted signal oceupies a 2400 Hz spectrum centered at 1706 Hz. Each
baud eontains information from a 4-bit sample of 9600 bps, a 3-bit sample
of 7200 bps, or a 2-bit sample of 4800 bps input data. Input data is
serambled before transmission to prevent the receiver from beeoming
sensitive to data patterns and to provide a uniform line-signal spectrum
for the equalization process. Receiver-earrier and timing-recovery eir-
cuits use information eontained in the transmitted data to eliminate the

need for the transmission of pilot tones.

The modem employs a digital adaptive equalizer that is equivalent
to a tapped-transversal delay-line filter without feedbaek. The equalizer
performs a eomplex-valued digital filtering operation on the most reeent
thirty-one samples of the in-phase and quadrature eomponents of the
reeeived signal. At eaeh baud time, it provides a pair of outputs that
eorrespond to the in-phase and quadrature eomponents of the equalized
reeeived signal. The data decision logic also generates in-phase and quad-
rature error signals; these error signals are the differenee between the
equalizer output signals and the selected data point. These error signals

are fed back to the equalizer and used to update the tap eoefficients.
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The magnitude of the error signal from the data decision logic also
provides an indication of the reliability of the data. When the average magni-
tude of the error signal exceeds a preset threshold, the modem automatically
initiates a training mode to reinitialize the equalizer parameters. During re-
training, a known sequence is transmitted and the equalizer adjusts its taps
by using knowledge of the transmitted sequence during this period rather than
making decisions on the received data. The training mode takes approxi-
mately 280 milliseconds during which the output of the modem is either all

ones or zeros depending on how it was strapped.

The modem has two data transmission modes: scrambler and
self-synchronication. In the scrambler mode, the digital data is added
(modulo 2) to the output of a pseudo-random sequence generator prior to
transmission. At the receiver, this sequence is subtracted out. The
objective of this scrambling is to eliminate any periodic patterns of bits
that may exist in the source data which the modulation-equalization tech-
nique may be sensitive to. In the self-synchronization mode, the generator
polynomial of the pseudo-random sequence is used to divide the data at

transmission and the inverse operation is performed upon reception.

Test Procedure

The AUTOVON performance was measured by establishing a com-
munication facility at the RADC/DICEF and transmitting through the
Codex 9600 modem. When the signal was received by the receive modem
and its decisions as to bit values were made, the received bit sequence
(suitably delayed to account for transmission delay) was added modulo 2
with no carry to the transmitted sequence. This summation (a bit-by-bit

error pattern) was then recorded on computer compatible magnetic tape
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in a suitable format for later statistical analysis. While dialing was to
target switches, the trunks were randomly selected by the inherent nature
of call dialing.

In all cases, data transmission originated at RADC and proceeded
via access line to the Tully, N.Y. AUTOVON switch., From Tully, con-
nections were made to the switches at Pottstown, PA., Arlington, VA.,
Rockdale, GA., and Santa Rosa, CA. (in varying orders and combinations).
The return connection was back to RADC via Tully. Of the switches used,
only Arlington, VA. was an ESS. Testing was conducted at all times of
the day and test runs were, for the most part, 30 minutes or 1 hour in
duration with redialing between runs. The retraining mode of the Codex
modem was disabled. In almost all of the testing, the Codex scrambler

mode was used.

Summary of Data

Data was collected at 4800 b/s and 9600 b/s on combinations of
AUTOVON links, the access line to Tully and with the modem in its self-
synchronization mode as opposed to its scrambler mode. The data will be

analyzed in four ways:

1) All 4800 b/s data versus all 9600 b/s data,
2) Analysis as a function of the number of switches dialed through,
3) Analysis as a function of circuit miles,

4) Analysis as a function of the number of AUTOVON trunks.

Additionally, appendices are presented containing the analysis of the access
line data and a comparison of the Codex 9600 modem performance to that
of the BELL 208 modem on some circuits where BELL modem data was

available,
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Appendix III presents a comparison of data collected using the self-
synchronication mode of the modem to data collected on similar circuits

using the scrambler mode.
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SECTION I

4800 VS. 9600 B/S DATA ANALYSIS

INTER-ERROR PROBABILITIES

The most valuable probabilities that can be obtained from the analysis
of the patterns of errors occurring in digital data transmission are the
average error rate and the inter-error probability distribution functions.

It is these distributions (the consecutive error distributions and consecutive
error-free gap distributions) that are commonly used to develop channel
models from which communications systems can be analyzed. Along with
these, another interesting probability, commonly used in coding system
design and channel modeling, is the probability of at least E errors in a
block of M bits, P(=E, M). The probability of at least one error in a
block is the probability that a message block will be received in error.

This probability defines the retransmission rate of a retransmission error
control system. Other values taken from the P(= E, M) curves are useful

in calculating the performance of forward error correction block codes.

The amount of data collected and reported on herein is summarized
in Table II. Over 3 billion bits were collected at 4800 b/s and almost
4 billion bits were collected at 9600 b/s. The first interesting point to note
is that the error rate at 9600 b/s is almost double that at 4800 b/s. This
tends to imply that the errors that occurred were time dependent. As will

be demonstrated later in this paper, errors occurred in bursts with long

error-free intervals separating the bursts.




Table IT
Data Summary - All Data

Bit Error

Data Rate Total Bits Total Errors Rate
4800 b/s 3,074, 760, 833 129, 742 4.3 E-5
9600 b/s 3, 996, 064, 721 325,130 8.1 E-5

As can be seen in Figure 1, the predominant type of error at 4800
b/s was the single error. The errors, while they occurred in bursts,
occurred singly within the burst. At 9600 b/s, while single errors still

predominate, double errors are almost as common.

The distribution of error-free gaps is indicative of the complexity
of the data channel. A large number of gaps in the range of zero to thirty
bits are usually seen on microwave circuits and are indicative of short
dense bursts. When gaps are most commonly long (thousands of bits), the
channel is generally random with a bit error rate in the neighborhood of
the inverse of the mean gap length. As can be seen from Figure 2, the
AUTOVON channel is very complex. There are microwave type short
gaps and more random error-related long gaps. This complexity will be
better understood in later sections of this paper where the data is sub-

divided by circuit complexity (number of switches, miles, or trunks).

Figures 3 and 4 exemplify an interesting characteristic of the Codex
modem; that is, when errors occur, they tend to occur in even numbers.
This shows up for a large range of numbers of errors in a block at 4800 b/s.
At 9600 b/s, fully 70% of the blocks with errors have either two or four
errors. This characteristic makes the Codex modem/AUTOVON channel
combination a difficult channel to code since most coding techniques
depend on some form of majority logic scheme for their success.
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The most commonly used error probabilities in the design of error
control coding systems (forward error correction or retransmission) are
the probabilities of at least E errors in an M bit block. For any value
of M, the probability of at least one error is the block retransmission
rate for a retransmission system (assuming perfect error detection) and
the uncorrected block error rate for a forward error correction system.
For a code that detects (or corrects) E-1 errors in an M bit block, the
probability of at least E errors is the post-detection (or correction) block
error rate. On Figures 5 and 6, these probabilities are presented for a
wide range of block lengths and error values. For almost any block length
and error value, the block error rate is no more than one-half order of
magnitude higher at 9600 b/s than at 4800 b/s. The shapes of the curves
are essentially the same for all values displayed, and it can be concluded
that in a system that uses error control (of some type), a design performed
against the 9600 b/s results would give the same or better performance at

4800 b/s.

BURST DEFINITIONS

The previous discussion of error pattern distributions does not pre-
sent the complete picture. There is no information about length of bursts,
nor is there information relative to the interval between bursts (guard
space). For this reason and as an aid in narrowing choices in coding sys-

tem design, the data shall be evaluated in terms of burst distributions.

Definition of a Burst

A burst is defined as a region of the serial data stream where the
following properties hold. A minimum number of errors, Me’ are

contained in the region and the minimum density of errors in the region
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is A. Both of these conditions must be satisfied for the chosen values
of Me and A for the region to be defined as a burst. The density of
errors is defined as the ratio of bits-in-error to the total number of bits

in the region.

The following properties hold for the burst. The burst always begins
with a bit-in-error and ends with a bit-in-error. A burst may contain
correct bits. Each burst is immediately preceded and followed by an
interval in which the density of errors is less than A.

The burst probability density function is defined as the probability
of occurrence of a burst of length N where N is any positive integer.
" The burst length is measured in terms of the total number of bits in the
burst. A separate burst probability density function may be determined

for each pair of A and Me values.

The minimum number of errors in a burst has been chosen to be
two for all the data included here. Experience[ 1 indicates that larger
values of Me would not change the values of burst length significantly.
When a value of one is selected for Me’ every error becomes a burst
and the requirement that a burst begin and end in different errors is
violated. Consequently, the burst distribution reduces to the consecutive
error distribution. While a minimum value A is used in defining bursts,
the actual burst error density is calculated. The algorithm has the effect

of maximizing this error density.

Definition of an Interval

The interval is defined as the region, bounded by correct bits, in the
serial data stream where the following property holds. The maximum

density of errors is less than A. An interval may contain errors and is
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always immediately prcceded and followed by a burst. Thus, each and
every bit in the data stream must lie in either a burst region or an interval

region,

The interval probability density function is defined as the probability
of occurrence of an interval of length L, where L is any positive integer.
The interval probability density is a joint function of both A and Me' Use
of Me = 1 has the cffect of reducing the interval distribution to the error-

free gap distribution.

The guard space ratio is defined as the ratio of an interval length

to the burst length preceding it.
BURST ANALYSIS

Burst Distributions

Examining the burst distribution functions in Figure 7, it is evident

that errors generally occur in bursts of less than 1000 bits duration. The

4800 b/s channel exhibits bursts that are almost one order of magnitude

shorter than those of the 9600 b/s channel for the same cumulative fre-

quency. The 9600 b/s bursts are both longer than those at 4800 b/s and dens:

in errors (Figure 8).

Interval Distributions

Intcrvals between bursts are generally very long at either data rate
(Figure 9) and a greatcr percentage of the intervals, 90% versus 83%, are
error-frce (Figure 10) at 4800 b/s than at 9600 b/s; that is, when random
errors between bursts occur, they are morc likely to occur at 9600 b/s
than at 4800 b/s. The exact relationship of bursts and intcrvals is shown

in Figure 11, from which it can be seen that a burst at 4800 b/s is followed
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by a longer interval than one at 9600 b/s. This result is very important

for forward error correction systems since about 6% of the bursts cannot
be randomized by interleaving due to the insufficient length (less than 3
times burst length) of the following interval.

MARKOV CHANNEL MODEL

The channel data collected is very useful for evaluating the perform-
ance of various techniques for error detection and correction that might be
applied to the channel. Unfortunately, the channel data is most useful to
those who have access to it along with large amounts of computer time and
sophisticated computer programs. It is, however, possible to calculate the
performance of such techniques [ 3] if a channel model is available. One

such model is the MARKOV chain model.

The MARKOV Chain Model

Consider the output Yy of the digital communication channel to be the
resultant summation of the input X, and the noise ek. Assume that the noise
is independent of the input X - Since the noise and, in turn, the error se-
quence is assumed to be independent of the input sequence, the channel may
be completely characterized by its error sequence E = (ek: k=1, 2, ...).

The error sequence is a bit stream of 0's and 1's where an error bit is

represented by a 1, and an error-free bit is represented by a 0.

A distribution function which canbe calculated for such an error scquence
is the error-free run distribution, P(0" |1). This distribution is the condi-
tional probability that an error will be followed by at least m consecutive
error-free bits. The error-free run distribution, which is closcly re-
lated to the error-free gap distribution, is used to obtain thc channel model.

In obtaining the model, it is furthcr assumed that the crror sequence
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has a limited number of states and the probability of being in any particular
state at the nth bit decision is conditionally dependent only upon the state
during the (n-1)th bit decision. Such a process is called a MARKOV process
of order one and can be represented by an N state MARKOV chain.

Fritchman [4] has developed a model for an N state MARKOV chain
that partitions the N states into two groups of states, A and B. The K (K< N)
states in group A correspond to K states where errors cannot occur. The
N-K states in group B correspond to the states in which errors can occur.
In order to simplify the mathematics, Fritchman made two restrictions on
the model. First, he did not allow transitions among the error states or
among the error-free states. Second, he limited the model to a single error

state, K = N-1, The state transition matrix for the MARKOV chain then

becomes:
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where pij is the probability of transition from state Si to state Sj' Fritchman

has shown that, for this model, the pij can be uniquely determined from the
N

error-free run distribution, since for a stochastic matrix, Z pij = R | == S
j=1

2, ..., N, there are only 2(N-1) = 2K unknowns. By fitting a sum of K expo-

nentials to the error-free run distribution, the 2K unknowns may be deter-

mined. If the error-free run distribution can be approximated by

a_(m) a, (m) a_ (m)
P(Om|1)=A1e1 +A2e2 +,,,+AKeK

then, Fritchman has shown that the transition matrix is given by
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The matrix is determined by applying a computer program to calculate the
values of the A's and a's that best fit the data error-free run distribution.

The program starts by assuming a two state model (K=1) and increments K
until a fit to the data error-free run distribution is achieved by the exponential

polynomial expression.

Data-Derived Channel Models

The error-free run distributions (derived from the gap distributions)
for the 4800 b/s and 9600 b/s data were fitted by sums of exponentials and the
state transition matrices were calculated. The results are presented in
Model 1 and 2. Since there is only one error state, K=N-1, the conditional
probability of error is the probability Py of being in state N, and an average
bit error probability [4] is found to be given by

Rell /o i
pe:' 1+Z e/ 8
j=1 \"jN

For each of the transition matrices, the bit-error probability is given for
the model, and the goodness of fit of the model is reported. In both cases,
the RMS error between the data error-free run distribution and the model-
predicted distribution is less than .10, and the model was validated to that
level of RMS error by using the model to generate error pattern data and

comparing the gap distribution functions to those of the raw data.
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MODEL 1

4800 b/s AUTOVON Data

. 999699 0 . 0003010
0 . 9999974 . 0000026
. 3669279 . 0443345 . 5887375

Model predicted error rate =5, 52 E-5

RMS error between model and data gap distributions = . 088

—

. 8656363
0
0

. 3668136
s

MODEL 2

9600 b/s AUTOVON Data

0

. 9994334
0

. 1796088

Model predicted error rate = 8,68 E-5

0

0
. 9999943
. 0640107

. 1343637
. 0005666
. 0000057
g 3895669J

—

RMS error between model and data gap distributions = ., 095
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SECTION II

ANALYSIS BY SWITCH CONFIGURATION

The AUTOVON data was eollected by connecting a series of
AUTOVON switches together to form eircuits. The question, therefore,
naturally arises as to what the impact of a series of switches is on the
circuit connection error performance. The average error rates seen on
various switch conneetions are reported in Table III. By one switch, we
define a circuit from RADC through the Tully, N.Y., switch out to one
switch, and baek to RADC via Tully. Thus, the Tully switch and the access
line from Tully to RADC appear twice in every configuration. At 4800 b/s,
the error rate almost doubles as one switch is added (from one to three).
This docs not occur for four switches, but here the data is a more restrie-
ted sample. At 9600 b/s, it was very difficult to connect through more
than one switch and successfully pass data. Thus, no error rate versus

switch connectivity conclusions can be drawn.
INTER-ERROR DISTRIBUTIONS

The eonseecutive crror distributions (Figures 12 and 13) demonstrate
that at 4800 b/s, the conseeutive error oecurrences differ between onc
switeh and more than onc switeh, but there are no variations among higher
numbers of switches. At 9600 b/s, the frequency of oceurrenee of double
errors decreases with increasing numbers of switches. This result may
only be a function of the inability to obtain large amounts of data for higher

levels of switch connectivity.
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1t will be recalled that the error-free gap distributions were very
complex for the overall data. It is clear from Figure 14, that there is a
switch dependency in this distribution at 4800 b/s. The one switch circuit
exhibits short dense bursts and random errors. As more switches are
added to the connection, the random errors gradually disappear and the
predominant characteristic is one of short bursts. At 9600 b/s (Figure 15),

no such switch dependency appears.

The probabilities of at least E errors in an M bit block for the
4800 b/s data (Figures 16 through 19) generally show an upward compres-
sion with switch connectivity indicating that for a given block length more
errors will occur within a block as more switches are included in the
circuit. This same effect appears in the 9600 b/s one- and two-switch
connections (Figures 20 and 21). The three-switch connection curves in
Figure 22 are presented only for completeness. Since it was difficult to
obtain data on such circuits, it is not clear that conclusions can be drawn

from this figure,

BURST DISTRIBUTIONS

Separating the bursts from the random errors, it can be observed
that there are no great variations of burst length with switch connectivity
(Figures 23 and 24). However, it is interesting to note that burst error
density decreases with increasing switch connectivity at 4800 b/s while
it increases at 9600 b/s (Figures 25 and 26). At both data rates, there is
no appreciable variation in interval length distribution with switch connecti-
vity (Figures 27 and 28), and the percentage of error-free intervals increases
with decreasing switch connectivity (Figures 29 and 30). Clearly, adding

more switches tends to break up intervals, but only the very long intervals
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are affected, thus causing little variation in the interval densities. The
relationship of bursts to following intervals, in terms of length (Figures 31
and 32), is little affected by the number of switches in the circuit.
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SECTION IV

ANALYSIS ACCORDING TO CIRCUIT MILEAGE

In the past, telephone channel error patterns have frequently been
analyzed according to circuit mileagc. The AUTOVON error patterns
have thus been grouped according to circuit miles in order to determine

whether there are any distance-related effects.
The data was divided into three classes:

° Less than 1, 000 miles,
° Less than 3, 000, but more than 1, 000 miles,

° More than 3, 000 miles.

The data, so subdivided, is summarized in Table IV. It should be
apparent from this table that, at least in terms of an average error rate,

circuit miles are not important.
INTER-ERROR DISTRIBUTIONS

The distributions of consecutive errors at 4800 b/s show a clear
dichotomy between less than 1, 000 miles and more than 1, 000 miles. For
the short circuits, errors are generally single errors while on the longer
circuits the frequency of double errors becomes significant (Figure 33).
The 9600 b/s consecutive errors are double error dominant (Figure 34) at
all distances. Similarly, in the error-free gap distributions, the shorter
range 4800 b/s circuits exhibit the random error characteristic while the
greater than 1, 000 mile circuits exhibit bursts as would be expected in
view of their double error occurrences (Figure 35). The 9600 b/s gaps
exhibit the same complex structure as the total 9600 b/s data (Figure 2) at

all circuit distances (Figure 36).
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The P(= E, M) curves exhibit the same upward compression toward
probability one as a function of milcage as has been seen previously, at
4806 b/s, with block error probability at less than 1, 000 miles being
greater than that at the other distances. (Figures 37 to 39.) This is con-
sistent with a more random nature of the errors at this distance. The
same probabilities at 9600 b/s indicate increasing numbers of errors and
probabilities of crrors at a given block length as the circuit mileage

incrcases (Figures 40 to 42),
BURST DISTRIBUTIONS

The dichotomy previously seen at 4800 b/s in the consccutive errors
and error-free gaps appears in the burst distributions, although here the
1, 000 to 3, 000 milc group is more closely allied to the less than 1, 000
mile group. The 9600 b/s data shows generally longer and denser bursts
as mileage increases. Based on the inter-error distributions, there arc
no new results to be drawn from the analysis of the data according to mile-
age. Therefore, the burst distributions, Figures 43 through 52, are

presented only for the purpose of consistency in the data description.
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SECTION V
ANALYSIS ACCORDING TO NUMBERS OF TRUNKS

The AUTOVON data can be organized in various ways. In previous
sections, the data has been examined from the point of view of how many
switches were dialed through (to determine the impact of switches on error
patterns) and the lengths of circuits in miles (to determine the impact of
mileage on error patterns). Another approach to organizing the data is
according to the number of trunks connected. The bit error rates clearly
show (Table V) that as more trunks are connected, the relative frequency
of error occurrence increases. Care should be taken to note that this is
not purely a switch-dependent effect since the data sample size divides
differently when considcring trunks rather than switches (i.c., there are
different numbers of trunks interconnecting the selected AUTOVON

switches). *
INTER-ERROR DISTRIBUTIONS

The distributions of consecutive errors at 4800 b/s and 9600 b/s
(Figures 53 and 54) are essentially the same as for switch connections.
The error-free intervals at 4800 b/s (Figure 55) show bursts for
five or more trunks, while for lesser numbers of trunks, the distribution
is that of random errors set on a pedestal of short dense bursts. The
9600 b/s error-frecc intervals (Figure 56) show the same complexity as
previously identified. This complexity appears to be a characteristic of
the 9600 b/s data independent of switch connectivity, trunk connectivity,

or mileage. At 4800 b/s, the error-free intervals show random

*
Private communication from J. McEvoy, RADC.
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characteristics for short mileage or few trunks with burst frequency in-

creasing as the number of switches are added.

At 4800 b/s, the P(= E, M) curves show increasing values of both E
and P(= E, M) as a function of increasing numbers of trunks in the circuit
(Figures 57 through 59). This same phenomena occurs at 9600 b/s
(Figures 60 through 62), although the small amount of data collected for a

six trunk connectivity has masked the increase in the range of E.
BURST DISTRIBUTIONS

The distributions of bursts (Figures 63 and 64) show very little
variation with trunks as do the densities of errors in those bursts (Figures
65 and 66). Likewise, the interval distributions are similar (Figures 67
and 68) with the exception that the intervals between bursts on the 4800 b/s
two trunk connection are very long. The interval densities at 4800 b/s
show no variation (Figure 69), but at 9600 b/s the percentage of intervals
which are error-free on six trunks (Figure 70) is less than 60%. Both data
rates show bursts that are generally followed by long intervals (Figures 71

and 72).
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SECTION VI

CONCLUSIONS

The objective of this paper has becn to examine the characteristics
of the error patterns that occur in digital data transmission at 4800 b/s and

9600 b/s on the AUTOVON telephone network.

At 4800 b/s, the error patterns are generally random on simplc
circuits with few switches, over short distances, on a few trunks. As the
number of switches are increased from one to four, the burstiness of the
data increases. Similarly, as thc circuit distance exceeds 3, 000 miles or

more than four trunks are incorporated, thc burstiness incrcases.

At 9600 b/s, the error pattcrns are a complicated combination of
bursts and random errors for the full rangc of switches, miles, or trunks.
This leads to the possible conclusion that while 4800 b/s data transmission
is most likely circuit limited, 9600 b/s data transmission, at least with

the Codex 9600 modem, is modem limited.
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APPENDIX I
TULLY ACCESS LINE ERROR PATTERNS

All of the circuits tested were accessed from the Rome Air
Development Centcr through the Tully, N.Y. AUTOVON switch. Since
the tests were loop tests, the access line appeared twice in every tested
circuit. It was felt that it would be of interest to evaluate the error
patterns on the simple circuit from RADC to Tully and back. Most of the
time this circuit was error-frce; therefore, it was difficult to obtain crror
pattern data on this circuit. The total data collected on the RADC to Tully
circuit is indicated in Table VI. The error rate was an order of magnitude
higher (10_5 versus 10_6) at 9600 b/s than at 4800 b/s and one-half to onc
order of magnitude lower than on AUTOVON plus the access line. Gencrally,
the errors occurred singly (Figure 73) and both circuits cxhibited the error-
frce gap distribution typical of random errors set on a plateau of short
bursts (Figure 74). The block error probabilities (Figure 75 and 76, E = 1)
arc one-half order of magnitude higher at 9600 b/s than at 4800 b/s.
There arc a few blocks with large numbcrs of errors on the access linc
and any code that dctcets or corrects errors on AUTOVON plus the access

line will do the same on the access line alone.

Table VI
Data Summary - Tully Access Linc

Bit Error
Data Rate Total Bits Total Errors Rate
4800 b/s 15, 294, 560 63 4,0 E-6
9600 b/s 96, 441, 088 2,963 8.1 B-6
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The distributions of bursts and burst densities (Figures 77 and 78)
are the same at either data rate and show very short, dense bursts. The
intervals between bursts are much longer at 4800 b/s than at 9600 b/s
(Figure 79), but less than 10% are error-free at 4800 b/s as compared to
almost 60% at 9600 b/s (Figure 80). Virtually all bursts are followed by
long intervals (Figure 81).
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APPENDIX II

COMPARATIVE ERROR PATTERNS OF BELL AND CODEX MODEMS

In addition to the data collected with the Codex 9600 modem, RADC
was able to obtain a limited sample of data with the BELL 208A modem*
at 4800 b/s. This modem is designed for 4800 b/s synchronous operation |
on an unconditioned 4-wire 3002-type channel. The modem uses phase
shift-keying and an adaptive equalizer with a 50 ms training time. The
design objective of the modem is to provide a block error rate no higher
than 10-2 for a 1000 bit block[?] In this appendix, the error patterns of
the two modems shall be compared. The data sample, while limited, is
similar in magnitude to some of the circuit configurations collected with
the Codex modem and should, therefore, be as significant as that data. As
is evidenced in Table VI, the error rate of the BELL modem is slightly
less than that of the Codex modem. Analysis shall be by circuit and only

circuit-independent conclusions, if any, shall be drawn.

LOOP TO ARLINGTON, VIRGINIA

As can be determined from the consecutive error distributions
(Figure 82) and the error-free gap distributions (Figure 83), the errors
themselves appear more random with the Codex modem than with the BELL.
There are fewer occurrences of consecutive errors, and the error-free
gap distribution has a greater appearance of randomness with the Codex
modem. This is an interesting case since it is somewhat deceiving. On
examination of the burst distributions (Figure 84), it can be seen that when
all data is forced to be in either a burst or an interval, the Codex data is

constructed of short bursts (under 100 bits), while the BELL data is

*
Referred to within the Bell System as the Data Set 208A. (5]

99




WIPOIN X3p0)

c-d 6°9 912 ‘s9 659 ‘¥20 ‘s¥6 s/q 008% VD ‘orepyooy 03 doog
wepo 1139
S-q 0% 1%S IV ‘99% ‘g1 $/9 008% ‘vD ‘orepyooy 03 doo1
UWIOPON Xop0o)D
S-d 0°S L91 ‘91 €10 ‘¥89 “22¢ §/q 008% | "VO ‘esoy ®jues 03 dooT
wepo 1144
s-9 £°1 81 ‘I LLZ 668 ‘¥6 - §/9 008% | VO ‘esoy ejueg 03 doo
UI9POIN X9p0)
-3 2°¢ 928 ‘02 618 ‘9L9 ‘€S9 8/q 008% VA ‘uoidurjay o3 doog
WApPON T11d9
s-9 8°1 626 602 ‘918 “2¢ s/q 008% ‘VA ‘uojsdurfay o3 dool
9jey Joxay Nd saoxay [ejol s)1d [ej0L Arey evled fraposuuo)

UIOPOJ XOpO) 'SA WApOW TTIdd - Arewrumg Bleq

IIA ®1qeL

100



100

80

60

Y0+

CUMULRTIVE FREQUENCY (%)

204

CODEX MODEM

BELL MODEM

3 '3 3 G ) 9 10 1 12 13
NUMBER OF CONSECUTIVE 81T ERRORS

Figure 82. Cumulative Distribution of Consecutive
Errors — Loop to Arlington 4800 b/s
100+
——
80 x/_,#fa—
Z 60-
>
5 | BELL MODEM
L
: Y0
< ;
5 4/,/’/ ///
= CODEX MODEM A
204 /
W T R U PR M S T S R B
GAP LENGTH+1 (BIT3)
Figure 83. Cumulative Distribution of Error-Free

Gaps — Loop to Arlington 4800 b/s

101




composed primarily of bursts in the 100 to 1, 000 bit range. In both cases,
the burst densities vary widely (Figure 85), and while a high percentage of
the Codex bursts are very dense (over 70%), these are the short runs of
consecutive errors. The remaining Codex bursts are low-density and, as
a result, the earlier distributions (consecutive error and error-free gap)
give the impression of randomness. In both cases, the bursts are separ-
ated by long intervals (Figure 86) containing similar densities of errors
(Figure 87). The bursts are followed by longer intervals (Figure 88) with
the Codex modem making these bursts better candidates for error detection
and correction in systems employing interleaving or retransmission.

This interval-to-burst ratio advantage is to be expected since the Codex
modem bursts are very short. The probabilities of at least E errors in

a block (Figures 89 and 90) are somewhat mixed. The block error-rate

(E = 1) is higher for the Codex modem, but the probabilities of larger
numbers of errors in a block are highe;' for the BELL modem. This is
consistent with the high frequency of single errors in the Codex modem
data and the block error-rate design objective of the BELL modem is

satisfied.
LOOP TO SANTA ROSA, CALIFORNIA

The differences in the Codex and BELL data on the circuit to Santa
Rosa, CA. are relatively slight. The Codex modem shows a slightly
higher occurrence of double errors (Figure 91) and of short bursts (Figure
92). In Figure 92, neither modem shows any random error characteristic.
Here again the error-free characteristic is not a precise guage of burst
length as evidenced in Figure 93. The BELL modem displays more bursts
under 100 bits, while the Codex modem bursts are over 100 bits long. As

on the Arlington, VA. circuit, the Codex bursts are denser (Figure 94) and
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the interval lengths (Figure 95) are larger for both modems with intervals
of similar low density of errors (Figure 96), Both modems show a

good distribution of long intervals following short bursts, although the
Codex modem is somewhat poorer in this respect (Figure 97). The
Codex modem exhibits higher probabilities of having large numbers of
errors in a block for all block sizes (Figures 98 and 99), and the BELL

modem meets its block error-rate design objective.
LOOP TO ROCKDALE, GEORGIA

The comparative data to Rockdale, GA. is essentially the same as
that to Santa Rosa, CA. and is presented only for completeness (Figures
100 through 108). Any differences can probably be ascribed to the small
amount of BELL data in this sample. This is the probable reason for the
BELL modem slightly exceeding its block error-rate design objective.

CONCLUSIONS

Based on the relatively small sample of data, there seems to be little
difference between the two modems in error distribution on the circuits con-
sidered. The only real differences are highlighted in Figures 109 and 110,
from which it is evident, that for large block lengths (over 300 bits), there
will be fewer errors in a block with the BELL modem than with the Codex
modem. This could be advantageous for an error control system using

random error detection and/or correction.
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APPENDIX III

CODEX SCRAMBLER MODE VS. CODEX SELF-SYNC MODE

The main body of the error-pattern data collected with the Codex
modem was collccted with the modem in its scrambler (SCR) mode. This
mode has the advantage of randomizing the transmitted bit-pattern so as to
minimize any data dependent error pattern characteristics. A small
amount of data was collected (Table VIII) with the modem in its self-sync
(SS) or nonscrambler mode. The error rate was not appreciably different

although the data sample sizes were radically different.

Comparative Error Distributions

The distributions of consecutive errors (Figure 111) showed no mode
depcndencies although the error-free gaps (Figure 112) imply more short
bursts in the self-sync mode. This is not confirmed by the burst distribu-
tions, Figure 113, although in all cases the majority of bursts are well
under 100 bits long. The remaining burst related distributions, Figures
114 through 117, showed no great variations between modes. The block
error rates were generally lower at 4800 b/s in the self-sync versus
scrambler modes (Figures 118 and 119), but higher at 9600 b/s (Figures
120 and 121).

It would appear from this limited sample of data, that the differences
in error performance of the two Codex modem modes is minimal, when the

source data is pseudo random.
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